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Abstract

The seismic response of two tall steel moment frame buildings and their variants is explored through

parametric nonlinear analysis using idealized sawtooth-like ground velocity waveforms, with a char-

acteristic period (T), amplitude (peak ground velocity,PGV), and duration (number of cycles,N ).

Collapse-level response is induced only by long-period, moderate to largePGV ground excitation.

This agrees well with a simple energy balance analysis. The collapse initiation regime expands to

lower ground motion periods and amplitudes with increasing number of ground motion cycles.

1.. Introduction

Tall steel buildings dominate the skyline of many cities in the western US exposed to serious seismicity

from a variety of sources. Consider the case of Los Angeles (LA). As of 2007, there were 489 buildings

with 10-19 stories, 118 buildings with 20-29 stories, 28 buildings with 30-39 stories, 11 buildings with

40-49 stories, and 10 buildings with 50 or more stories. Seismic risk to these buildings arises from two

sources: well mapped-out strike-slip faults such as the San Andreas, Newport-Inglewood, and Santa

Monica-Hollywood-Raymond faults that have some form of surface expression, and the network of

blind-thrust faults hidden deep inside the Earth that includes the Northridge fault and the Puente Hills

fault underneath downtown Los Angeles. While the San Andreas strike-slip fault system has the

potential for large (moment magnitude� 8) earthquakes, typically every 200-300 years [35, 34], the

blind-thrust faults have the potential for more moderate magnitude� 7 earthquakes [33]. The diverse

source mechanisms of future earthquakes on these faults could result in earthquake shaking with vastly
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different features. These features include frequency content as well as intensity and duration of strong

shaking. Adding to the complexity is the presence of deep sedimentary basins where hundreds of tall

buildings are sited. The majority of the tall buildings in Los Angeles (607 out of 656) are in the 10-30

story range. In this height range, the steel moment frame system, consisting of a grid of beams and

columns rigidly connected together, is the most widely used lateral force-resisting structural system.

To quantify the hazard posed to these buildings, it is imperative to identify the combination of features

that induce the greatest response in these structures. Of particular interest are the ground motion

features that could collapse these massive structures.

Real-world data that could provide insights into these aspects is minimal. There have been only

three sizable earthquakes that have struck cities with modern tall steel buildings – the January 17,

1994, magnitude 6.7, Northridge earthquake, the September 19, 1985, magnitude 7.8, Mexico City

earthquake, and the January 17, 1995, Magnitude 6.9, 1995 Kobe earthquake. The Northridge earth-

quake caused fractures to occur in the connections of many of these buildings [8], but the shaking was

not intense enough to cause collapse (most of the energy was directed away from the LA basin into the

Santa Susanna mountains [41]). Steel construction is not common in Mexico City. Of the few isolated

steel buildings existent there at the time of the 1985 earthquake, two 14- and 21-story towers out of

�ve tall steel frame buildings collapsed in the Conjunto Pino Suarez apartment complex, and, although

it remained standing, a third 21-story tower was leaning six feet out of plumb at the roof level. These

collapses have been attributed to the strong ampli�cation of the lake bed on which parts of the city

are located and the long-period nature of the ground motion [1]. The ampli�cation was enabled by

the long duration of the main shock resulting in a resonant buildup of seismic waves within the thick

clay layer just beneath the surface. The three identical 21-story structures consisted of �ve 6m-bays in
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the long direction and two 6m-bays in the short direction. The lateral force-resisting system consisted

of moment frames at all column lines with two bays in the short direction braced using X braces, and

one bay in the long direction braced using V braces [31]. Collapse is deemed to have occurred due

to weld failure in the built-up box column and subsequent local buckling of the �anges. In addition

to demonstrating that even steel highrise structures can collapse, this earthquake brought to the fore

the possibility of upper-story collapses in midrise and highrise structures, due in part to the pounding

of adjacent buildings, drastic tapering of columns in the upper stories, and more generally to the dy-

namics of the structural response. The Kobe earthquake strongly shook many welded steel moment

frame buildings ranging from lowrise buildings constructed in the 1950s and 1960s to modern highrise

structures constructed within the preceding 10 years. While the design and construction of these build-

ings are signi�cantly different from that in the US, the extent of damage observed in steel structures in

this earthquake once again point to the possibility of a set of unfortunate factors leading to disastrous

consequences. Out of 630 modern steel buildings in the heavily shaken area, the Building Research

Institute determined that approximately one-third experienced no signi�cant damage, one-third rela-

tively minor damage, and the remaining third severe damage, including partial or total collapses of

approximately half of these buildings [7, 8].

These three earthquakes, despite providing very useful insights into steel building vulnerabili-

ties, do not provide a complete picture of all the conditions that could result in collapse, especially in

the taller steel buildings. For this, a systematic sensitivity analysis of these buildings under earthquake

excitation is needed. Challa and Hall [4] conducted a series of 2-D nonlinear analyses on a 20-story

building using six idealized pulse-like ground motions that are similar to pulses in near-fault ground

motion records. MacRae [25] and Gupta and Krawinkler [10, 11] analyzed 20-story steel moment
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frame models under a suite of 20 ground motion records compiled by Somerville et al. [36] and de-

termined the structural response as a function of the spectral acceleration at the fundamental period

of the building. The buildings were designed to be hypothetically sited in Los Angeles, Seattle, and

Boston. Several research groups tried modeling the damage to an 18-story steel frame building during

the Northridge earthquake of 1994 (e.g., [5, 3]). Medina and Krawinkler [27, 28] evaluated the drift

demands and their associated uncertainties in non-deteriorating regular moment resisting frames sub-

jected to ordinary ground motions, i.e., without near-fault effects. Krishnan [15] studied the response

of four 19-story steel moment frame buildings with irregular con�gurations under near-source ground

motion from the 1994 Northridge, the 1995 Kobe, and the 1978 Iran earthquakes.

More recently, incremental dynamic analysis [40] has been used to assess the collapse capacity

as a function of the spectral acceleration at the fundamental period of the building (e.g., [44, 45, 46]).

In this approach, a structure is analyzed under progressively scaled-up ground motion records and its

response is computed. The spectral acceleration level at which structural response becomes unbounded

is the collapse capacity of the building. Finally, the emergence of rupture-to-rafters simulations [24]

has led to extensive investigations on the performance of tall steel moment frame buildings under large

simulated earthquakes in Los Angeles, San Francisco, and Seattle (e.g., [21, 30, 43, 29]).

All these analyses provide insights into the nature of ground motions that might collapse a tall

steel moment frame building. However, they are not comprehensive and systematic in exploring the

ground motion parameter space uniformly. This is because a limited number of records are used

that span a narrow band of frequency, intensity, and duration. Moreover, a single ground motion

intensity measure (e.g., spectral acceleration at the building fundamental period) is used to relate the

structural response to ground motion features. This generally leads to a large scatter in the results
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of the simulations – a re�ection of the inability of this single measure to adequately capture all the

features of ground motions to which these buildings are sensitive to.

1.1. Study Objective and Approach

The objective of this study is to determine the sensitivity of the collapse regime of tall steel moment

frame building response to three ground motion features– frequency content, intensity, and duration.

A straightforward approach to achieving this objective is to: (i) develop a simpli�ed (idealized) repre-

sentation scheme for seismic ground motion waveforms using three parameters to characterize ground

motion frequency content, intensity, and duration; (ii) conduct a parametric nonlinear response history

analysis sweep of selected tall building models by varying the parameters of the idealized waveforms;

such a suite of analyses can help to systematically and uniformly explore structural response to ground

motions with features spanning a broad spectrum, covering earthquakes of all kinds; (iii) create a

database of key structural response metrics as a function of ground excitation waveform parameters;

and (iv) map the key structural response metrics that track collapse (transient and peak residual inter-

story drift ratio) against the idealized waveform parameters. A necessary condition for the �ndings to

be equally applicable to real seismic ground motion is that the structural response under the best-�t

idealized ground excitation must closely mimic that under the true waveform being emulated. This

condition forms the basis for the selection of the ground motion idealization scheme.

1.2. Buildings Considered and Modeling Details

Here, we focus on two tall steel moment frame buildings and their variants. The �rst building is an

existing 18-story of�ce building, located within �ve miles of the epicenter of the 1994 Northridge

earthquake. An isometric view of its FRAME3D model is shown in Figure1(a). It was designed
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according to the 1982 Uniform Building Code (UBC) and completed in 1986-87. The height of the

building above ground is 75.7 m (248' 4”) with a typical story height of 3.96 m (13' 0”) and taller �rst,

seventeenth, and penthouse stories. The lateral force-resisting system consists of two-bay welded steel

moment-frames, two apiece in either principal direction of the structure as shown in Figure1(b). The

location of the north frame one bay inside of the perimeter gives rise to some torsional eccentricity.

Many moment-frame beam-column connections in the building fractured during the Northridge earth-

quake, and the building has been extensively investigated since then by engineering research groups

[32, 5, 3]. Fundamental periods, computed assuming 100% dead load and 30% live load contribution

to the mass, are 4.52s (X-translation), 4.26s (Y-translation) and 2.69s (torsion). We consider two mod-

els of the existing building, one with connections susceptible to fracture, and the other with perfect

connections (premature fracture is excluded). Two orthogonal orientations (with respect to the strong

component of the ground motion) are considered for the model with perfect connections.

The second building, a FRAME3D model of which is shown in Figure1(c), is similar to the

existing building, but the lateral force-resisting system has been redesigned according to the 1997

UBC. It has been designed for larger earthquake forces and greater redundancy in the lateral force-

resisting system, with 8 bays of moment-frames in either direction (although lateral resistance will

likely be dominated by the three-bay moment frames shown in Figure1(d) as opposed to the single-

bay moment frames). The frame located in the interior of the existing building has been relocated to

the exterior, eliminating the torsional eccentricity. Fundamental periods, computed assuming 100%

dead load and 30% live load contribution to the mass, are 4.06s ([X+Y-] translation), 3.85s ([X+Y+]

translation) and 2.60s (torsion). The positive (+) directions of the X and Y axes are shown on the

plans (Figure1). Note that the fundamental translational modes are oriented approximately along the
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Figure 1: Structural models of the two 18-story steel moment frame buildings: (a) Isometric view of the existing
building (designed using the 1982 UBC). (b) Plan view of a typical �oor of the existing building showing the
location of columns and moment-frame (MF) beams. (c) Isometric view of the new building (redesigned using
the 1997 UBC). (d) Plan view of a typical �oor of the redesigned building.

�oor plate diagonals. This is because the L-shaped layout of the moment frames at opposite corners

of the building, the use of box columns at the corners along one diagonal and I-sections for columns

at the corners along the other diagonal, and the absence of X-direction beams in two bays located at

diagonally opposite corners create two axes of symmetry (one strong and one weak) that are oriented

roughly along the �oor plate diagonals. Detailed �oor plans, beam and column sizes, and the gravity,

wind and seismic loading criteria for the two buildings can be found in [20]. Only one variant of the

redesigned building is modeled here, that with perfect connections.
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Figure 2: Schematic representation of the elasto�ber beam element used to model columns and beams. Each
element is divided into a linear elastic middle segment and two non-linear �ber segments.

ey esh eu er

su

sy

0

1

2

6B

6C

6D

6E

6F

6H

8

9

11

10 4

3

5

6

6A
7

6G

e

s

Backbone

Curve

Shifted Backbone Curves

Hysteresis Loops

Shifted Backbone Curve

1

E

1

E sh

Figure 3: An example of the �ber response in an elasto�ber element.

The buildings are modeled using our 3-D nonlinear time history analysis software, FRAME3D

(http://virtualshaker.caltech.edu ), which has been extensively validated against ana-

lytical solutions of simple problems and cyclic data from component tests, as well as pseudodynamic

full-scale tests of assembled structures [14, 18, 19, 16, 17]. FRAME3D incorporates material and

geometric nonlinearity, which enables the modeling of the global stability of the building, fully ac-
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counting forP � � effects accurately. Beams are modeled using segmented elasto�ber elements,

with nonlinear end segments that are subdivided in the cross section into a number of �bers, and an

interior elastic segment as shown in Figure2. The stress-strain response of each �ber in the nonlinear

end-segment is hysteretic, including �exural yielding, strain-hardening and ultimately rupture of the

�ber, as shown in Figure3. Since strength and stiffness of the end segments of beams and columns

are integrals of the corresponding quantities over all the �bers comprising the segment, they too can

degrade as the stresses in the �bers exceed the ultimate stress and traverse the downhill path to rupture.

In the extreme event that all the �bers of the end segment rupture, there will be a complete severing of

the column or beam. There is great uncertainty in the performance of the beam-to-column connections

in older welded steel moment frame buildings as evidenced in the 1994 Northridge earthquake, where

brittle behavior was observed in many of these connections. To take into account this vulnerability of

older steel moment-frames to fracture, FRAME3D allows for a user-speci�ed probabilistic description

of the fracture strain of �bers in elasto�ber elements. While �bers can fracture at randomly selected

strain levels, low-cycle fatigue is not explicitly included. Neither is local buckling of column �anges.

Beam-to-column joints are modeled in three dimensions using panel zone elements that include shear

yielding (Figure4). These elements have been shown to simulate damage accurately and ef�ciently.

Results of pushover analysis in either direction of all three models (existing building with sus-

ceptible and perfect connections, and redesigned building with perfect connections), with the models

being subjected to a slow, ramped, horizontal ground acceleration that increases at a constant rate of

0.3 g/minute, and structural response being computed dynamically using FRAME3D, are presented in
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Figure 4: (a) Idealization of the beam-column connection into a panel-zone element. (b) Backbone curve for
the nonlinear hysteretic stress-strain relationship in the panel-zone element.

Figure51. The structural models are identical to those used for ground motion analyses except that

masses for the horizontal degrees of freedom are recalculated such that their sum matches the total

seismic-design mass, W/g, with a distribution that is proportional to the 1997 UBC seismic static de-

sign loads. Thus, the lateral loads are essentially proportional to the horizontal seismic design forces

over the height of the structure increasing with time at a slow rate.

2.. Ground Motion Idealization

Tall buildings of the kind targeted in this study are long-period structures and are generally more re-

sponsive to long-period ground excitation. High frequency content in the ground motion has little

in�uence on their collapse behavior [21]. The power in the long-period regime is more apparent in

1Similar �gures showing results of pushover analysis of these buildings, presented in an earlier paper [21], were erro-
neous. The errors associated with the fracture-susceptible connection model were caused by an error in the implementation
of �ber fracture in FRAME3D. This error had a signi�cant effect on pushover analysis alone. It had negligible impact on
the dynamic analyses of the existing building model presented in that paper. The errors associated with the redesigned
building model were caused by input errors related to panel zone element orientations. These errors affected not only the
pushover analysis results, but also the dynamic analysis results presented therein. The peak interstory drift ratios for the
dynamic analyses of the redesigned building model in that study should be reduced by about 25% on the average.
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(a) (b)

(c) (d)

Figure 5: Pushover analysis of the existing building model with fracture-susceptible connections (curves labeled
[1]), the existing building model with perfect connections (curves labeled [2]) and the redesigned building model
with perfect connections (curves labeled [3]). (a) X-direction pushover – roof displacement versus base shear.
(b) Y-direction pushover – roof displacement versus base shear. (c) X-direction pushover – base shear (solid
lines) and roof displacements (dashed lines) as functions of time. (d) Y-direction pushover – base shear (solid
lines) and roof displacements (dashed lines) as functions of time.

ground velocity and displacement waveforms than in the ground acceleration waveform that is domi-

nated by the higher frequencies. Thus, structural damage to tall buildings is better correlated with peak

ground velocity (PGV) and peak ground displacement (PGD) than with peak ground acceleration

(PGA). The collapse of the tall buildings in Mexico City at a distance of over 350km from the epicen-
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ter of the Mexico City earthquake of 1985 is testament to this fact. The amplitudes of high-frequency

ground accelerations had attenuated signi�cantly due to the large propagation distance. However, the

seismic waves retained signi�cant energy at longer periods. As alluded to previously, what caused

these buildings to collapse is the ampli�cation of this long-period excitation (growth ofPGD and

PGV in the 2s–3s period range) as the waves propagated through the thick clay layer just beneath the

surface upon which they were located [1]. This sensitivity of tall building response toPGV andPGD

(in addition to duration) suggests that ground velocity and displacement waveforms are best candidates

for parameterization, as far as applicability to tall buildings is concerned. Displacement waveforms

have one drawback however. They can have static offsets that may (if they occur quickly) or may not

(if they occur slowly) have a signi�cant in�uence on tall building response. Characterizing the static

offset may require one or two additional parameters, increasing the complexity of the parameterization

scheme; so this approach was not pursued in this study. On the other hand, residual ground velocities

following an earthquake are always zero, making ground velocity waveforms the best candidate for

parameterization. Here, ground velocity waveforms are idealized as triangular (sawtooth-like) wave-

trains as shown in Figure6(b). This ground motion representation scheme was �rst used by Hall et

al. [12] to study the effects of near-source ground motion on tall building response. The displacement

history in this representation [Figure6(a)] closely mimics the displacement pulse that would result

from the rupture of a penny-shaped crack on a fault surface (point-source) in the vicinity of the crack.

Although a single cycle is shown in the �gure, multi-cycle extensions with identical period and ampli-

tude are also used to represent long-duration ground motion waveforms. The acceleration waveform

corresponding to this velocity history is a rectangular wave-train [Figure6(c)], while the displacement

is a one-sided parabolic wave-train [Figure6(a)]. The one-sided nature of the displacement should not

be of concern. For multi-cycle excitation, displacement is cyclic but always has a positive sign. This

12



(a) (b) (c)

Figure 6: Waveforms for the (a) displacement, (b) velocity, and (c) acceleration of the idealized pulses used as
input ground motions.

is an artifact of the idealization scheme, mathematically equivalent to shifting the origin of the frame

of reference, and should have little or no effect on the dynamics of the structure2.

Three parameters are used to characterize the ground velocity waveform: periodT, amplitude

PGV (peak ground velocity), and number of cyclesN . The ability of this ground motion repre-

sentation to accurately emulate the true seismic ground motion waveforms, as far as impacts on the

buildings of interest are concerned, must be ensured. Toward this end, the best-�tting single-cycle ide-

alized waveform from a suite of idealized waveforms to the strong component (with largestPGV) of

18 near-source records (velocity histories) is determined using the Least Absolute Deviation method

(L1 norm). TheL1 norm (least absolute deviation) accords equal weightage to the amplitude as well

as period of ground motion during the minimization process, unlike theL2 norm (least squares) which

would accord far greater weightage to the amplitude than the period. Since structural response is sen-

sitive to both periods and amplitudes, theL1 norm is used. The idealized waveform suite comprises

2The one-sided displacement history shown in Figure 2(c) can be made two-sided by simply shifting the baseline by
an amount equal to half the peak ground displacement, i.e., performing a transformationvg = vg � P GD=2, wherevg is
the ground displacement as a function of time. Mathematically, this transformation will not result in a change in either the
ground velocity history or the acceleration history (because the �rst and second derivatives of this constant shift would be
zero). Since the forcing term in the dynamic equations of motion solved by FRAME3D involves only ground acceleration,
this term remains unchanged under such a baseline shift of the displacement history. Therefore, this baseline shift in the
displacement (equivalent to physically relocating the structure by a distance equal to half the peak ground displacement
and exciting the relocated structure by a displacement wave that has equal positive and negative displacement amplitudes)
will not affect the results of the dynamic analysis. It should be noted that the structure is still oscillating back and forth
about its vertical line of plumb (since the ground acceleration is cyclic with equal negative and positive amplitudes).
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of waveforms with period varying between 0.5s and 6.0s at 0.25s intervals,PGV varying between

0.125m/s and 2.5m/s at 0.125m/s intervals, and the number of cycles ranging from 1 to 5 as well

as 10 to emulate long duration records. The near-source records are from the 1971 San Fernando,

the 1978 Iran, the 1979 Imperial Valley, the 1987 Superstition Hills, the 1989 Loma Prieta, the 1992

Cape Mendocino, the 1992 Landers, the 1994 Northridge, the 1995 Kobe, and the 1999 Chi-Chi earth-

quakes. The idealized waveform �ts for 2 cases are shown in Figure7. Best-�tting 2-, 3-, 4-, 5-, and

10-cycle waveforms are shown as well. These are not utilized in the forthcoming analysis since all

the records have a prominent near-source pulse that is likely to dominate the structural response. They

are, however, used in characterizing ordinary multi-cycle ground motion in later sections. The �ts for

the remaining 16 cases can be found in [22].

The FRAME3D models of the existing building (perfect and susceptible connections), and the

redesigned building (perfect connections) are analyzed under the 18 three-component near-source

records. For the existing building model with susceptible connections and the redesigned building

model with perfect connections, the strong component of ground motion (with largestPGV) is ori-

ented in the building X direction. For the existing building model with perfect connections, two anal-

ysis cases are considered. In the �rst case, the strong ground motion component is oriented in the

building X direction and the weak component is oriented in the building Y direction. In the second

case, the ground motion horizontal components are swapped. The peak transient interstory drift ratio

(IDR), which is the peak value for all stories of the relative displacement between the top and bottom of

a story normalized by its height, is used as a measure of structural performance. It is a good indicator

of damage to both structural elements (plasticity and fracture) as well as many types of nonstructural

elements. The same models are also analyzed under the one-component best-�tting single-cycle ide-
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 7: Near-source ground motion records from the (a) Imperial Valley and (b) Kobe earthquakes. Shown
overlaid are the idealized 1-, 2-, 3-, 4-, 5-, and 10-cycle saw-tooth waveforms with the least absolute deviation
(L 1 norm) from the corresponding record. Also shown is the comparison of peak transient interstory drift ratio
(IDR) pro�le over building height computed using real record against that computed using the best-�t idealized
1-cycle saw-tooth waveform for the (c) & (e) existing building (susceptible connections); and (d) & (f) the
redesigned building (perfect connections).epeak andeavg are the maximum and average errors in the peak IDR,
respectively, estimated using the idealized pulse motion. The corresponding comparisons of18th (Penthouse)
�oor X-direction displacement time-histories are shown in (g) & (i) for the existing building, and (h) & (j) for
the redesigned building.

alized waveforms. Shown in Figure7 is the comparison of the pro�les of peak transient IDR over the

height and penthouse response histories under the actual and idealized motions for the existing build-
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ing (susceptible connections) and the redesigned building (perfect connections) models for two ground

motion cases. The degree of agreement in the IDR pro�les and the penthouse response histories is fair

enough to allow the use of the idealized waveforms as surrogates for earthquake excitation to establish

the sensitivity of target building response to ground motion features. The peak values of IDR in all

four building models from the two sets of analysis are compared against each other and the errors are

quanti�ed in Figure8 (results from all 18 earthquake records are included). The mean and standard

deviation of a Gaussian �t to the IDR errors are 0.00056 and 0.0069, respectively. Both values are

reasonably small. All 18 ground motion cases are included in this calculation.

(a) (b)

Figure 8: (a) Peak transient interstory drift ratio (IDR) in all the building models computed using the near-source
records plotted against that computed using best-�t idealized 1-cycle saw-tooth waveforms. The diagonal line
represents identical results from the two analyses. (b) Histogram of the error in determining the peak transient
IDR from the idealized waveform as opposed to the actual record. The best-�t Gaussian is also shown.

3.. Tall Building Response Sensitivity to Ground Motion Features

To assess the sensitivity of structural response to ground motion features, a series of 3-D nonlinear

response history analyses are conducted on the four building models: (a) Existing building (suscep-

tible connections) under X direction excitation, (b) Existing building (perfect connections) under X
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direction excitation, (c) Existing building (perfect connections) under Y direction excitation, and (d)

Redesigned building (perfect connections) under X direction excitation. The models are subjected to

the idealized 1-component ground motion waveforms introduced in the last section with ground mo-

tion periodT varying between 0.5s and 6.0s at 0.25s intervals,PGV varying between 0.125 m/s and

2.5 m/s at 0.125 m/s intervals, and the number of cyclesN taking the values of 1 to 5 and 10. Key

response metrics are computed and stored in a database. These include the peak transient inter-story

drift ratio (IDR) and its location over the building height, the peak residual IDR and its location, per-

manent roof drift (or tilt) following seismic shaking, plastic rotations in beams, columns, and joints

(panel zones), and locations of fractures in the model with fracture-susceptible connections. The peak

residual IDR is computed by lowpass-�ltering the interstory drift ratio histories and averaging the

points within a 5s time-window that has the lowest variance of all such time-windows in the record.

A two-pass Butterworth �lter with a corner at 10s is employed3. A similar approach is adopted for

computing the permanent roof drift which is the roof residual displacement normalized by building

height. The penthouse is excluded from the peak transient IDR calculations.

In order to unravel the structural response sensitivity from all perspectives, the following maps

and/or �gures are generated for each building model and cataloged in a comprehensive report [22]: (i)

color maps with contours of peak transient IDR (and its story location) on theT-PGV plane, one map

for each N; (ii) peak transient IDR (and its story location) maps on thePGD-PGV plane, one map for

eachN ; (iii) peak residual IDR (and its story location) maps on theT-PGV plane, one map for each

N ; (iv) peak residual IDR as a function of peak transient IDR, one map for eachN ; (v) permanent

roof drift (roof residual displacement normalized by building height) maps on theT-PGV plane, one

3Despite padding the ground motion histories with 22s of zeros, the structure does not come to a complete rest by the
end of the record due to its low damping (2%). However, the oscillations do settle down to small amplitudes about the
permanent offset (residual displacement or interstory drift). The lowpass �lter removes these oscillations and the average
response value over the 5s window with the lowest variance is a good approximation to the permanent offset.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Peak transient interstory drift ratio (IDR) maps for the existing [susceptible connections, (a), (c), (e)]
and the redesigned [perfect connections, (b), (d), (f)] buildings as a function of idealized saw-tooth waveform
excitation parameters, periodT, peak ground velocityPGV, and number of cyclesN . The one-component
ground motion is applied in the building X direction. The story location where the peak occurs is labeled at each
of the 460 [T,PGV] combinations for which analyses were performed. Contours corresponding to empirical
performance levels of immediate occupancy (IO), life-safety (LS), collapse prevention (CP), red-tagged (RT),
and collapsed (CO), are shown in bold font. The principal direction building fundamental periods are indicated
for reference. 18



map for eachN ; (vi) permanent roof drift as a function of peak transient IDR, one map for eachN ;

(vii) curves of peak transient IDR (with story locations) as a function ofT, one curve for eachPGV

andN ; (viii) curves of peak transient IDR (with story locations) as a function ofPGV, one curve for

eachT andN ; and (ix) curves of peak transient IDR (with story locations) as a function ofN , one

curve for eachT andPGV.

For the contour maps, the data from the coarse parametric analysis grid are interpolated on to a

�ne parameter grid using Delaunay triangulation with linear interpolation [42]. A volume-preserving

circular-averaging correlation �lter4 is subsequently applied to the data in order to smoothen sharp

transitions in the contours. Also plotted on the peak transient IDR maps are contours corresponding

to upper limits on IDR for Immediate Occupancy (IO; IDR=0.007), Life Safety (LS; IDR=0.025), and

Collapse Prevention (CP; IDR=0.05) performance levels [6]. In addition, contours corresponding to

peak transient IDRs of 0.075 and 0.100 are also shown. In thousands of collapse analyses conducted

by the authors on models such as the ones considered in this study, gravity-driven progressive collapse

takes hold of a large percentage our numerical models beyond peak transient IDRs of 0.100. Given

that the models do not include certain critical failure modes such as local buckling in column �anges,

peak transient IDRs greater than 0.10 in the physical structure would almost surely result in complete

collapse. The peak transient IDR range of 0.075-0.100 (CO) may be indicative of partial to complete

collapse (unstable). Models with intermediate peak transient IDRs in the range of 0.050-0.075 can be

expected to be on the verge of collapse (neutrally stable) and hence may be red-tagged (RT).

The following observations can be made from the results of the simulations:
4Correlation and convolution �ltering are standard digital signal processing techniques to �lter a signal in time or

space. An image can be blurred, for example, by assigning each pixel a value equal to the average of that pixel and its
four neighbors. This can be mathematically accomplished by either convolution or correlation of the pixel data with a
unit-volume �lter or kernel. Convolution involves space-reversing the �lter (rotating the kernel by 180� ), translating it
over the data, and summing the overlap (integrating the product of the time-reversed volume-preserving �lter and the data).
Correlation involves the same process, except that the integration is performed without space-reversing the �lter.
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(a) Figure9 shows the peak transient IDR maps on theT � PGV plane for the existing building model

with susceptible connections under 1-, 3-, and 5-cycle, X direction idealized waveform excitation.

Figure10shows the corresponding maps, but on thePGV � PGD plane, for the redesigned building

model with perfect connections under 3-cycle, X direction excitation. In the frequency and ampli-

tude bands of relevance to seismic ground motion, the peak transient IDR response is more or less

monotonously increasing (or constant, but not decreasing) with increasingPGV at a givenT level.

The same is more or less true with increasingT at a givenPGV level. This desirable feature in as

far as identifying damaging features of ground motion is concerned is not necessarily true at given

levels of peak ground displacement (PGD). For example, for two 3-cycle ground motion records

with PGD = 1:5m, the peak transient IDR in the existing building with susceptible connections

[Figure10(a)] points to collapse under the record withPGV = 1:25m=s, but only red-tagged un-

der the record withPGV = 2:25m=s. This suggests that structural response can be more simply

characterized using thePGV-T combination rather than thePGV-PGD combination.

(b) The IO and LS regimes (peak transient IDR< 0.025) do not shrink signi�cantly with increasing

number of ground motion cycles (see Figure9). Plasticity levels, if at all yielding occurs, are quite

low at these low IDRs. This can be clearly seen in Figure11 where the peak residual IDR is shown

plotted against the peak transient IDR in the existing building model with susceptible connections,

when subjected to 1- and 3-cycle X direction excitation. Residual (permanent) IDR is insigni�cant

when transient IDR< 0.025. As a result, not much degradation is expected due to increased number

of cycles. This holds true even for the existing building model with connections susceptible to

fracture, perhaps because the susceptibility to fracture exists only in beams and not in columns of

the model. Moreover, this susceptibility is quite low in the beam top �ange and web. Another factor

may be that low-cycle fatigue is not considered in the modeling approach. There is some, although
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(a) (b)

Figure 10: Peak transient interstory drift ratio (IDR) maps for the existing [susceptible connections, (a)] and
the redesigned [perfect connections, (b)] buildings as a function of the peak ground displacement (PGD) and
peak ground velocity (PGV) under idealized 3-cycle saw-tooth waveform excitation. The one-component
ground motion is applied in the building X direction. The story location where the peak occurs is labeled
at each of the 460 [T,PGV] combinations for which analyses were performed. Contours corresponding to
empirical performance levels of immediate occupancy (IO), life-safety (LS), collapse prevention (CP), red-
tagged (RT), and collapsed (CO), are shown in bold font.

only mildly signi�cant, shrinking in the CP regime with increasing number of cycles. The greatest

change going from 1-cycle to 10-cycle excitation is the dramatic and progressive expansion of the

collapse regime at the expense of the shrinking of the CP–CO regime. In other words, under multi-

cycle excitation (N > 2), there is a steep gradient in the response surface going from collapse-safe

performance to complete global collapse with small increases in the ground motion period and/or

peak ground velocity. This is especially true in the long-period excitation regime (T > T1, whereT1

is the fundamental natural period of the building), where there is little difference inPGV thresholds

for CP, RT, and CO performance levels. This points to the extreme sensitivity of structural response

to the velocity amplitude of long-period, long-duration ground motion. Performance can range from

satisfactory to complete collapse with subtle differences in thePGV in the vicinity of the CP/RT/CO

thresholds. This swift degradation of strength with increasing number of cycles is similar to the post-

yield deterioration of strength observed under monotonic quasi-static pushover loading (Figure5).
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(a) (b)

Figure 11: Peak residual interstory drift ratio (RIDR) in the existing building (susceptible connections) plotted
as a function of the peak transient IDR under idealized saw-tooth waveform excitation. The results for (a)
1-cycle and (b) 3-cycle excitations are shown separately. The one-component ground motion is applied in
the building X direction. Points corresponding to peak transient IDR> 0:10 are indicative of near-certain
collapse; residual IDR is no longer meaningful. Hence, these points are not shown. The immediate occupancy
(IO), life-safety (LS), collapse prevention (CP), red-tagged (RT), and collapsed (CO) performance levels are
marked on the IDR axis.

The threshold values for the exceedance of the CP, RT, and CO performance levels of (a) idealized

wave period atPGV of 2.5m/s and (b)PGV at period of 6s, for various number of idealized wave

cycles, are listed in Table1 for all four building models5.

(c) For near-certain complete collapse (peak transient IDR> 0.10) of buildings with perfect connec-

tions to occur under 1- or 2-cycle excitation (e.g., near-source records), the excitation period must

exceed roughly the building fundamental period. For the existing building, the excitation period

must exceed 4.5s, whereas, for the redesigned building, it must exceed 4.0s (see Figures12(a)and

12(b)). However, thePGV threshold for collapse of the redesigned building under 2-cycle excitation

is higher (1.2 m/s from Figure12(d)) than that of the existing building (0.9 m/s from Figure12(c)).

Furthermore, this intensity threshold holds steady for cycles with a wide range of periods (4s–6s)

5It should be pointed out that aP GV of, say, 1m/s atT = 6s period is indicative of a seismic waveform with far
greater energy than one withP GV of 1m/s atT = 1s period. These waveforms could result from vastly different seismic
sources in signi�cantly distinct geological settings. Due consideration must be given to these aspects when making any
direct comparisons.
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Model N Thresholds for CP Thresholds for RT Thresholds for CO

P GV (m/s) T (s) P GV (m/s) T (s) P GV (m/s) T (s)
@T = 6s @P GV = 2.5m/s @T = 6s @P GV = 2.5m/s @T = 6s @P GV = 2.5m/s

Existing 1 0.800 2.00 1.150 3.60 1.575 4.50
building 2 0.625 1.75 0.750 3.60 0.900 4.50

(susceptible 3 0.600 1.50 0.700 3.50 0.750 4.45
connections) 4 0.600 1.40 0.625 2.35 0.625 4.00
X direction 5 0.600 1.25 0.600 2.20 0.625 2.50
excitation 10 0.500 1.00 0.500 1.35 0.500 1.50

Existing 1 0.810 2.10 1.250 4.50 1.900 5.63
building 2 0.750 2.10 0.875 4.50 1.125 5.10
(perfect 3 0.690 2.10 0.800 4.25 0.875 4.75

connections) 4 0.625 2.10 0.720 4.00 0.775 4.50
X direction 5 0.600 2.10 0.650 3.75 0.720 4.25
excitation 10 0.500 1.30 0.500 1.60 0.500 1.80

Existing 1 0.860 1.90 1.180 4.50 1.650 5.40
building 2 0.740 1.90 0.875 4.45 1.025 4.80
(perfect 3 0.650 1.90 0.750 4.30 0.850 4.50

connections) 4 0.625 1.80 0.700 3.50 0.725 4.25
Y direction 5 0.600 1.60 0.625 2.30 0.625 3.40
excitation 10 0.500 1.25 0.500 1.40 0.500 1.50

Redesigned 1 1.100 2.65 1.450 3.70 1.900 4.50
building 2 0.950 2.20 1.130 3.15 1.350 3.70
(perfect 3 0.875 2.10 1.000 2.75 1.100 3.20

connections) 4 0.850 2.05 0.900 2.50 0.975 2.80
X direction 5 0.825 2.00 0.875 2.40 0.875 2.60
excitation 10 0.750 1.75 0.800 2.05 0.800 2.08

Table 1: Peak ground velocity and period thresholds for the exceedance of the collapse prevention (CP), red-
tagged (RT), and collapsed (CO) performance levels for all building models.N is the number of cycles of
ground excitation.

in the case of the redesigned building. It does not drop with increasing period as in the case of the

existing building.

(d) ThePGV thresholds for near-certain complete collapse (peak IDR> 0.10) under 1-cycle to 10-cycle

X direction excitation varies approximately from 1.575m/s to 0.5m/s for the existing building model

with susceptible connections, from 1.9m/s to 0.5m/s for the existing building model with perfect
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(a) (b)

(c) (d)

Figure 12: Peak transient interstory drift ratio (IDR) maps on theT � PGV plane, and peak transient IDR
versus peak ground velocityPGV curves at various excitation periodsT, for the existing building [perfect
connections, (a), (c)] and the redesigned building [perfect connections, (b), (d)] under 2-cycle idealized saw-
tooth waveform excitation. The one-component ground motion is applied in the building X direction. The
story location where the peak occurs is labeled at each of the 460 [T,PGV] combinations for which analyses
were performed. Contours corresponding to the empirical IO, LS, CP, RT, and CO performance levels are
shown in bold font. The principal direction building fundamental periods are indicated for reference.

connections, and from 1.9m/s to 0.8m/s for the redesigned building model with perfect connections

(Table1). These values apply to long-period ground motion (T = 6s). There is a big drop in the

PGV thresholds from 1-cycle excitation to 2-cycle excitation. Beyond 2 cycles, the drop in the

PGV thresholds is more gradual with increasing number of cycles.

(e) Collapse risk is negligible/minor if ground motionPGV < 0:5m=s or T < 1:5s for N � 5 for all

24



(a) (b)

Figure 13: Peak transient interstory drift ratio (IDR) is shown plotted against the idealized 5-cycle, saw-tooth
waveform excitation peak ground velocity (PGV) for (a) the existing (susceptible connections) and (b) the
redesigned (perfect connections) buildings at various levels of waveform periods (T). The one-component
ground motion is applied in the building X direction. The story location where the peak occurs is labeled
at each of the 460 [T,PGV] combinations for which analyses were performed. The empirical immediate
occupancy (IO), life-safety (LS), collapse prevention (CP), red-tagged (RT), and collapsed (CO) performance
levels are marked on the IDR axis.

four building models (e.g., see Figure13).

(f) Partial (and perhaps complete) collapse (peak transient IDR> 0.075) is almost certain to occur in all

four models if ground excitation has a periodT > 5s, a velocity amplitudePGV > 1m=s, and has

more than one cycle (N > 1).

(g) While the areal coverage on thePGV-T plane of the “CP or worse” regime is about the same in

both the existing and redesigned building models (both with perfect connections), the signi�cantly

higher PGV threshold for collapse of the redesigned building under long period ground motion

(T > 5s) is the main bene�t of the 1997 UBC design when compared to the 1982 UBC design. In

addition, thePGV threshold for Life-Safe (LS) performance holds steady for the redesigned building

model with increasing T, whereas it drops rapidly for the existing building model with increasing

T. The stiffer, but stronger, redesigned building is thus more robust in its response to long period

ground motion when compared against the more �exible, but weaker, existing building model. The
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same is generally true for highPGV-low T excitation as well with the redesigned building model

outperforming the existing building model. However, in the intermediate period range (T = 3 � 4s),

the performance of the redesigned building is distinctly worse than that of the existing building, but

only when thePGV exceeds about 1m/s. This is a direct consequence of the shift in the dynamic

characteristics of the redesigned building toward the higher frequencies. Thus, the stiffening that

typically accompanies strengthening results in a tradeoff in system performance, greater robustness

to short and long period motions going hand-in-hand with marginally poorer performance under

intermediate period excitations, for the building considered in this study.

(h) The effect of connection susceptibility to fracture in lowering thePGV threshold for collapse under

long period ground excitation (T > 5s) is clear. This effect diminishes with increasing number of

cycles as the degradation due to fracture saturates after a few cycles, while degradation due to plastic-

ity continues to grow with increasing number of cycles. Ultimately, under 10-cycle excitation, both

the perfect and susceptible connection models have similarPGV thresholds for collapse under the

T = 6s ground motion (within approximately 0.125m/s of each other which is the PGV discretiza-

tion size for the parametric analysis conducted here). However, for shorter period ground motion

(T = 3s) thePGV threshold for collapse under 10-cycle ground motion is far greater (1.75m/s from

Figure14(a)) for the perfect connection model than for the susceptible connection model (1.15m/s

from Figure14(b)). As a result, the areal coverage of the collapse regime in theT-PGV plane

is much greater for the fracture susceptible connection model when compared against the perfect

connection model.

(i) Peak residual IDR occurs only beyond the LS performance level (peak transient IDR of 0.025) and

grows linearly, but slowly until the CP performance level, then accelerates signi�cantly. Beyond this

level of performance, much of the transient IDR is not recovered and residual IDR forms a much
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(a) (b)

Figure 14: Peak transient interstory drift ratio (IDR) maps for (a) the fracture-susceptible and (b) the perfect
connection models of the existing building as a function of excitation periodT and peak ground velocity
PGV, for 10-cycle idealized saw-tooth waveform excitation. The one-component ground motion is applied
in the building X direction. The story location where the peak occurs is labeled at each of the 460 [T,PGV]
combinations for which analyses were performed. Contours corresponding to empirical performance levels of
immediate occupancy (IO), life-safety (LS), collapse prevention (CP), red-tagged (RT), and collapsed (CO),
are shown in bold font. The principal direction building fundamental periods are indicated for reference.

greater percentage of the transient IDR (e.g., see Figure11). Iwata et al. [13] conducted a study

of twelve steel structures damaged in the 1995 Kobe earthquake. Using the measured peak residual

IDR and reported repair costs, they estimated a reparability limit of 0.015 for the peak residual IDR.

However, there are two cases presented by them where buildings with peak residual IDR greater than

0.02 were successfully repaired. In most cases, this level of peak residual IDR is reached when the

peak transient IDR exceeds 0.05, the CP performance level. Thus, while the structure may not have

collapsed at this IDR level, it certainly becomes unusable at this stage. This lends credence to the

red-tagging of these buildings beyond the peak transient IDR of 0.05 that is adopted in this study.

(j) There is a high degree of correlation between the permanent roof drift (roof residual displacement

normalized by building height) and the peak residual IDR as evidenced by the close correspondence

between their relationships to the peak transient IDR (compare Figures15 and11). So the amount

of lean (or tilt) following an earthquake could perhaps be used to estimate the peak residual IDR and
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(a) (b)

Figure 15: Permanent roof drift (tilt normalized by height) in the existing building (susceptible connections)
plotted as a function of the peak transient interstory drift ratio (IDR) under idealized saw-tooth waveform
excitation. The results for (a) 1-cycle and (b) 3-cycle excitations are shown separately. The one-component
ground motion is applied in the building X direction. Points corresponding to peak transient IDR> 0:10 are
indicative of near-certain collapse; residual IDR is no longer meaningful. Hence, these points are not shown.
The empirical immediate occupancy (IO), life-safety (LS), collapse prevention (CP), red-tagged (RT), and
collapsed (CO) performance levels are marked on the IDR axis.

hence the post-earthquake condition of the building [13].

(k) The number of cycles of ground excitation has minimal impact in cases where peak transient IDR

is below the CP limit. If the peak transient IDR exceeds the CP limit, degradation is swift with

increasing number of cycles for both susceptible-connection as well as perfect-connection building

models (Figure16), once again reminiscent of the post-yield strength degradation observed under

monotonic quasi-static pushover loading (Figure5).

(l) The story location of peak transient IDR closely tracks the ground excitation periodT, steadily

dropping from the top of the building with increasingT. The downward migration halts not at the

bottom story, but slightly higher. This phenomenon has important implications for the mechanism

of collapse of these building models [22, 23].

(m) Under short period excitation (T < 1:5s). the peak transient IDR saturates to a value below the

CP limit with increasingPGV (e.g., Figure13). Under longer period ground motion, the peak
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(a) (b)

(c) (d)

Figure 16: Peak transient interstory drift ratio (IDR) is shown plotted against the number of cycles (N ) in
the idealized saw-tooth waveform excitation for the existing [susceptible connections, (a), (c)] and redesigned
[perfect connections, (b), (d)] buildings at various levels of peak ground velocity (PGV). Sub�gures cor-
respond to excitation periods of 3s and 5s. The one-component ground motion is applied in the building X
direction. The story location where the peak occurs is labeled at each of the 460 [T,PGV] combinations for
which analyses were performed. The empirical immediate occupancy (IO), life-safety (LS), collapse preven-
tion (CP), red-tagged (RT), and collapsed (CO) performance levels are marked on the IDR axis.

transient IDR grows withPGV (linearly for moderate period excitation, more rapidly for long period

excitation withT > T x ).

These observations can be qualitatively explained by way of the classical analysis of energy

budget in multi-story buildings subjected to earthquake excitation [38, 39]. Starting from the gov-

erning differential equation of motion and integrating all terms with respect to the structural relative
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displacement vector,v , the equation for energy balance can be written as:

Ek(t) + E � (t) + Es(t) = E I (t) (1)

whereEk(t) is the instantaneous kinetic energy of the system,E � (t) is the energy dissipated by viscous

forces until timet, Es(t) is the recoverable strain energy stored in the system plus the dissipated

hysteretic energy until timet, andE I (t) is the energy imparted to the system by the input excitation

until time t, given by

Ek(t) =
1
2

N fX

i =1

mi [ _vi + _vg]2 ; E � (t) =
Z

f �
T dv; Es(t) =

Z
fs

T dv =
N fX

i =1

Z
f si dvi (2)

E I (t) =
Z N fX

i =1

mi [ •vi + •vg] dvg =
Z N fX

i =1

mi •vi dvg +
1
2

N fX

i =1

mi _vg
2 (3)

In the above equations,f � is the damping force vector,fs is the restoring force vector,mi is the

mass of �oor i andN f is the number of �oors in the building.vi , _vi , and •vi are the displacement,

velocity and acceleration, respectively, of �oori relative to the ground.vg, _vg, and •vg are the ground

displacement, velocity, and acceleration respectively.E I is the total work done by all the inertial forces

(base shear) on the foundation (displacing through a displacement equal to the ground displacement).

In other words, it is the energy imparted to the structure during seismic shaking (e.g., [2, 9, 26, 37]).

If the input excitation period is much shorter than that of the structure, we havevi � � vg; as a result,

E I � 0. For the long-period buildings of this study, the energy imparted from short-period excitation

is small and the peak transient IDR must consequently be quite small. If the input excitation period

is much longer than that of the structure,vi � 0, andE I � 1
2

N fX

i =1

mi _vg
2, i.e., the input excitation

energy is proportional to the square of the ground velocity. It is clear from this analysis that for the
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long-period structures of this study, only long-period ground motion can induce a strong response.

This explains why collapse-level response is induced only by ground motions with periods longer than

the fundamental period of the building (for single-cycle excitation). Moreover, for long period motion,

the structural response degrades rapidly withPGV due to the quadratic relationship between input

energy andPGV. If the intensity of shaking (PGV) is very strong, then the period does not have to

be as long to induce collapse-level response. Alternately, within certain limits, a longer period motion

relative to the building fundamental period requires a smallerPGV to cause collapse-level response.

This explains the lowerPGV thresholds required for collapse-level IDR in the Y direction of the

existing building (perfect connections) compared to the X direction (Ty = 4:26s < T x = 4:52s). Of

course, if ground motion period is too long (greater than, say, twice or thrice the fundamental period

of the building), then loading is almost static and does not induce strong enough dynamic response.

It should be noted that the energy balance analysis is not appropriate for excitation velocities that are

extreme where conservation of momentum may be more applicable. However, peak ground velocity

from earthquakes seldom exceeds 2.5m/s and energy balance would generally be applicable.

4.. Limitations of the Study

(a) The �ndings of the study are based on analyses of just two moment frame buildings in the 15-20 story

class. These buildings cannot be realistically considered to cover the entire class of steel moment

frame buildings. Having said this, the periods and strengths of these two buildings are signi�cantly

different, the existing building has a prominent torsional eccentricity whereas this is eliminated in the

redesigned building, and different levels of vulnerability to fracture have been considered. Thus, the

models analyzed do cover a broad spectrum of features within this class of structures. Furthermore,

the sensitivity of structural response of these models is consistent with theoretical energy balance
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predictions. The strong theoretical basis for the �ndings suggest that they are robust and may be

broadly applicable to the entire class of tall steel moment frame buildings. However, further studies

are needed to con�rm this.

(b) The parametric analyses are conducted using single component excitation. The results are thus

applicable to ground motions with the strong component oriented in either one of the two principal

directions of the buildings (or lateral force-resisting system). If the strongest shaking is at a 45�

angle with respect to either principal direction of the building the peak transient IDR response of the

structure may be estimated as the sum of the square root of the squares of peak transient IDR from

the two components of ground motion in the building principal directions.

(c) Ground velocity waveforms with positive and negative phases of different amplitudes or with an

unequal number of positive and negative phases have not been considered in the parametric analyses.

(d) As with any modeling techniques, the FRAME3D models of the buildings have limitations too: (i)

Composite action of moment-frame beams has not been included; (ii) Damage to �oor slabs is not

modeled; (iii) Floor framing beams that support the dead weight of the �oors are not modeled. While

they are typically much shallower and smaller than the moment frame beams and, so, assumed pin-

connected, in reality they do offer partial restraint; (iv) Some critical failure modes such as local

�ange buckling of I-sections are not included in the structural modeling; (v) Column splices have

not been modeled. These splices are weak points and could fail especially if the column goes into

tension during the earthquake; (vi) Stiffness and strength of partitions, and stair & elevator enclosures

is not included; (vii) The structure foundations have not been included in the structural models. Soil-

structure interaction is not included in the analyses.
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5.. Conclusions

Parametric analysis of two 18-story steel moment frame buildings and their variants are conducted to

study their sensitivity to ground motion features. The �rst is an existing building (Tx = 4:52s; Ty =

4:26s; T� = 2:69s) designed according to the 1982 UBC. The second has the same con�guration, but is

redesigned according to the 1997 UBC (Tx+ y� = 4:05s; Tx+ y+ = 3:85s; T� = 2:60s). Four cases are

considered – existing building with susceptible connections excited in the X direction, existing building

with perfect connections excited separately in X and Y directions, and redesigned building with perfect

connections excited in the X direction. Ground velocity waveforms are idealized as sawtooth-like

wave-trains, characterized by three parameters- a periodT, an amplitudePGV (peak ground velocity),

and a duration represented by the number of cyclesN . The structural response under a suite of real

records matches closely with the response under the corresponding best-�tting idealized waveforms.

The four building models are analyzed under a suite of idealized ground motion waveforms applied

in either direction and the results are stored in a database.T is varied between 0.5s–6.0s,PGV is

varied between 0.125m/s–2.5m/s andN is varied between 1–5. 1-cycle (near-source) ground motion

with pulse-periods longer than 4.5s andPGV greater than 1.625m/s, and 3-cycle motion with cycle-

periods longer than 3.25s andPGV greater than 0.75m/s cause collapse in the buildings considered

in this study. Under short period excitation (T < 1:5s). the peak transient interstory drift ratio (IDR)

saturates to a value below the collapse prevention (CP) performance limit with increasingPGV, i.e.,

collapse can only be caused by long-period ground motion. Under longer period ground motion, the

peak transient IDR grows withPGV (linearly for moderately long-period excitation, more rapidly for

long-period excitation withT > T x ). Collapse risk is negligible/minor ifPGV < 0:5m=sor T < 1:5s

for N � 5 for all four building models. Partial (and perhaps complete) collapse is almost certain to
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occur in all four models if ground excitationT > 5s, PGV > 1m=s, andN > 1. These �ndings

are qualitatively explained using a classical energy balance analysis for multi-story buildings under

earthquake excitation. The number of cycles of ground excitation has minimal impact in cases where

peak transient IDR is below the CP limit. If the peak transient IDR exceeds the CP limit, degradation

is swift with increasing number of cycles for both susceptible as well as perfect-connection models.
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