


1991; etc.� were exclusively conducted using phenomenological
models implemented on the DRAIN2D analysis framework
�Kanaan and Powell 1973; Allahabadi and Powell 1988; Prakash
et al. 1993�. While these approaches continue to be pursued
�Tremblay 2002; Tremblay and Poncet 2005; Han et al. 2007;
etc.�, recent brace modeling efforts have largely concentrated on
multielement or multisegment approaches to model a single
brace. These include an inelastic beam-column element model by
Uriz et al. �2008�, incorporated into the OpenSees computational
framework �McKenna 1997; Mazzoni et al. 2005�, which ac-
counts for distributed inelasticity through integration of material
response over the cross section and subsequent integration of sec-
tion response along the element; a flexibility-based element with
exact interpolation of forces evaluated at a number of integration
points along the length of the element and interpolation of dis-
placements using compatibility equations by Schachter and Rein-
horn �2007�; a distributed inelasticity element, with a bounding
plasticity model of force resultants for the interaction between
bending moment and axial force by Jin and El-Tawil �2003�; a
two-dimensional �2D� eight-segment fiber element model, with
geometric updating of the interior nodes enabling the modeling of
large deformations by Hall and Challa �1995�; a 2D plastic hinge
element model with geometric updating, which requires at least
two elements to model each member also by Hall and Challa
�1995�; and a 56-segment version of the Hall-Challa fiber element
model by Gan and Hall �1998� with mass of the brace included.
Neuenhofer and Filippou �1997, 1998� and de Souza �2000� de-
veloped flexibility-based elements with force-interpolation func-
tions to capture the variation of the bending moment along its
length. They studied simple beams and frames using a single
element to model each member but with three or more along
length integration points. These studies were limited to monoti-
cally applied static loads. Scott and Fenves �2006� developed a
plastic hinge integration method, derived from the Gauss-Radau
quadrature rule, to overcome some of the problems of nonobjec-
tive response caused by strain-softening behavior in force-based
beam-column finite elements. While the early phenomenological
models were too closely dependent on the data �and specimen�
used for calibration and could not be easily generalized, the mod-
ern formulations result in a large number of global degrees of
freedom for each brace and using these for the analysis of large-
scale braced structures would be an expensive proposition. Re-
cently, the applied element method, where the structure is
discretized finely with adjacent elements being connected through
a pair of normal and shear springs at their vertices, has been used
to model column buckling and postbuckling behavior, as well as
snap-through buckling in trusses �e.g., Meguro and Tagel-Din
2002�. However, generalized calibration remains a challenge in
this approach.

What is required is a physical modeling approach �with physi-
cally measurable parameters whose calibration is not specimen or
loading-history dependent� that retains the attractive feature of
few degrees of freedom in phenomenological models, yet can
accurately capture nonlinear geometric and material effects. The
work presented here is an effort in this direction. The modified
elastofiber �MEF� element developed here is a 3D hybrid exten-
sion of the 2D Hall-Challa fiber element and plastic hinge models
�Hall and Challa 1995�, which facilitates the modeling of large
3D braced steel structures in a computationally efficient manner.
As the name indicates, it builds on the elastofiber beam element
developed for the modeling of moment frame beams and columns
with yielding concentrated at the ends of the member �Krishnan

and Hall 2006b�.
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FRAME3D Analysis Framework

The structural model in the FRAME3D analysis framework
�Krishnan 2003, 2009a; Krishnan and Hall 2006a,b� consists of
beam/column/brace elements connected to 3D panel zone ele-
ments at panel midpoints �attachment points� or panel corners
�Fig. 1�. The panel zone element models nonlinear shear defor-
mation in the region of the joint where the beams and columns
intersect. One column, the associated column of the joint, runs
continuously through the height of the joint, and the panel zone
element models the joint consisting of the length of the associated
column that lies within the depth of the connecting beams. Each
panel zone element consolidates the flanges, webs, and doubler
plates of the associated column into two orthogonal panels, ¬ and
−, which always remain planar and orthogonal. Edges of these
panels contain attachment points a, b, c, and d, where beams
attach, and e and f on the top and bottom, where columns attach.
Braces attach to one of the eight panel corners. Eight global de-
grees of freedom �DOFs� are associated with each node �J, K,
etc.� located at the center of the panel zone elements. They in-
clude three translational DOFs, with respect to the global coordi-
nate system, and five rotational degrees of freedom, with respect
to the panel zone coordinate system, one to capture twisting of the
panel zone element as a rigid body about the intersection of the
two panels, two to accommodate a rigid in-plane rotation of Panel
¬ and its shear deformation, and two more to accommodate a
rigid in-plane rotation of Panel − and its shear deformation. The
element arrangement in the structural model with explicit model-
ing of the joint enables the clear length of these elements to be
accurately captured. The clear span plays a particularly important
role in the buckling phenomenon. Following the structure to col-
lapse requires satisfying the dynamic equations of equilibrium in
the deformed configuration at each instant of time. The analysis
framework includes geometric updating of the joint nodes, the
attachment points and the interior nodes, and the element orien-
tations to accommodate large translations and rotations, automati-
cally accounting for P−� effects and allowing the analysis to
follow a structure’s response well into collapse.

MEF Element

Fiber elements have been successfully implemented to more ac-
curately account for nonlinear material behavior under combined
biaxial bending �MY�, MY�� and axial load �P�, including PMM
interaction, strain hardening, cracking, and spread of nonlinearity
along the member. Each element is divided into a number of
segments and each segment is discretized into a number of fibers
in the cross section, with each fiber running the full length of the
segment. Fully discretized fiber elements are computationally ex-
pensive, especially when implemented in a 3D framework. For-
tunately, in a series of cyclic load analyses conducted on isolated
braces modeled using the fully discretized 2D Hall-Challa fiber
elements �Hall and Challa 1995�, Gan and Hall observed that
strain is concentrated in a short segment at midspan of braces
with pinned ends and in short segments at the two ends, as well as
at midspan of braces with clamped ends �Gan 1996; Gan and Hall
1998�. This observation suggests the possibility of efficiently, yet
accurately, modeling braces by concentrating nonlinearity in short
segments at the ends and at midspan of the element.

The MEF beam element is designed to take advantage of this
observed behavior. It is conceived as consisting of five segments

delineated by six nodes �Fig. 2�a��. The two exterior nodes, 1 and
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2, coincide with one of the six attachment points or one of the
eight panel corners of the adjacent panel zone elements at the left
and the right. The four interior nodes, 3–6, separate the two end
fiber segments and the central fiber segment from the two elastic
segments. Each elastic segment is thus sandwiched between an
end fiber segment and the central fiber segment. The elastic seg-
ments are elastic versions of the plastic hinge element �Krishnan
and Hall 2006a�, i.e., no axial yielding and no plastic hinging. The
fiber segment is based on the finite element method, wherein the
beam translations and rotations are interpolated linearly and inde-
pendently from their nodal values, requiring a one-point integra-
tion on the shear terms to prevent locking. Each fiber segment is
discretized into 20 fibers that run the entire length of the segment.
The arrangement of these fibers for wide-flange and box sections
is shown in the figure. A fiber area zeroing capability is provided
to adapt these layouts for angle, double-angle, channel, and T
sections. Associated with each fiber is a nonlinear hysteretic
stress-strain law, proposed by Hall and Challa �1995�, for axial
stress, �n, and axial strain, �n, where n denotes the nth fiber. This
hysteresis model defines a backbone curve �Fig. 2�b�� consisting
of a linear portion, a yield plateau, a strain-hardening region
which is described by a cubic ellipse, and a strain-softening re-
gion described by a continuation of the same cubic ellipse culmi-
nating in fiber rupture. The backbone curve is characterized by
seven parameters: yield stress �y, ultimate stress �u, Young’s
modulus E, strain at initiation of strain hardening �sh, strain at
ultimate stress �u, rupture strain �r, and tangent modulus at initia-
tion of strain hardening Esh. Hysteresis loops �Fig. 2�b�� consist of
linear segments and cubic ellipses, and the hysteretic rules to
define the cyclic response of each panel are given by Challa
�1992�.

Local buckling and fracture have been observed and reported
in many cyclic axial load tests on braces �Black et al. 1980; Zayas
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Tremblay et al. 2003�. More recently, Fell et al. tested 19 brace
specimens �eight hollow structural sections �HSS�, eight pipe sec-
tions, and three wide-flange sections� subjected to near-fault and
far-field cyclic loadings under the auspices of the Network for
Earthquake Engineering Simulation �NEES� program �Fell et al.
2006; Fell 2008; Fell et al. 2009�. They observed buckling with
kinking in the gusset plates at the ends and at the brace midspan,
with increased yield localization under larger load amplitudes.
This was followed by local buckling at the midspan hinge, sub-
sequently triggering ductile fracture. Upon further cycling, the
cracks propagated across the section in a ductile manner, leading
to sudden severing of the brace in a subsequent tensile excursion.
In a different set of experiments on cold-formed HSS bracing
members subjected to cyclic loading, Han et al. �2007� observed
local buckling followed by fracture at the midspan of specimen
with low width-to-thickness ratios and fracture at the end slotted
connection in specimen with high width-thickness ratios. After
local buckling, large jumps occurred in the strain rates once the
strain reached 0.015–0.030, possibly indicative of initiation of
fracture. Strain measurements at and beyond local buckling can-
not necessarily be relied upon due to the uncertainties in the in-
tegrity of the strain gauges at large strains. Even if the strain
measurements can be made accurately, the fracture strains are
likely to vary from specimen to specimen. While the MEF-
element formulation is not amenable to the inclusion of local
buckling, a fiber fracture capability, in the form of a user-specified
probabilistic description of the fracture strain, is included to ap-
proximately represent brace fracturing. At the beginning of the
analysis, the fracture strains for the fibers in all the MEF elements
of the model are determined as independent realizations using the
corresponding user-defined probability distributions. These initial
fracture strains are held constant for the entire duration of the
dynamic analysis. This method was first proposed by Hall �1995,
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in moment frames, accounting for variability and uncertainty in
fracture initiation strains. It should be noted that this strain is an
average fiber strain over the length of the entire segment and does
not correspond to the true strain in the continuum that can get
much larger locally. When the fiber strain reaches the fracture
strain, it fractures and can no longer take tension, but upon rever-
sal of loading the fractured and separated parts can come in con-
tact, and the fiber is able to resist compression again. This is, by
design, unlike fiber rupture upon which the fiber can take no
compression. Successive fracturing or rupturing of fibers can ul-
timately lead to complete severing of the brace. The phenomeno-
logical models of past studies incorporated fracture either by
specifying the plastic rotation at fracture as a function of brace
slenderness and plate width-to-thickness ratios �Tremblay 2002;
Tremblay et al. 2003; Tremblay and Poncet 2005� or by trans-
forming the axial deformation history of the brace into standard
cycles and assuming that the brace is fractured when the number
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derness ratio, the width-to-thickness ratio of the compression
flange, the width-to-depth ratio of the section, and the mechanical
properties of steel �Tang and Goel 1989; Hassan and Goel 1991�.
Both methods postulate the instantaneous fracture of the entire
cross section. The MEF element overcomes this limitation by
allowing fracture in one fiber to occur independently from another
fiber based solely on its instantaneous strain �although, since fiber
strains must be consistent with nodal rotations, adjacent fibers
tend to fracture at close time intervals especially under unixial
bending conditions�. Thus, fibers far away from the neutral axis,
such as the flange fibers, will fracture earlier than the web fibers,
enabling partial and progressive fracture of the cross section as
observed in experiments.

Assumptions in the MEF-element formulation include pris-
matic sections, plane sections remain plane, small strains, no
warping restraint, and no along-span loads. Lateral deflections
relative to the chord in the two elastic segments are assumed
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of freedom, three translational and three rotational. The interior
nodes are assumed massless, and this allows for static condensa-
tion to be performed on the associated DOF, labeled 1–24 in Fig.
2. As a result, for each MEF element, updating the element stiff-
ness matrix and the internal force vector requires an iterative
nonlinear local structural analysis within each global iteration
�Krishnan 2009b�. The coordinates of the four interior nodes are
updated at the end of each iteration. This geometric updating is
critical for simulating large-deformation processes such as buck-
ling. Using the updated configuration, the segment stiffness ma-
trix and stiffness force vector are computed for each of the five
segments as described by Krishnan and Hall �2006b� and as-
sembled into the corresponding elemental quantities. For the three
fiber segments, the incremental fiber strains are calculated from
the incremental segment node displacements and rotations. If the
beam ends are pinned ended, the contribution from the rotations is
not included. For partially continuous connections, this contribu-
tion is scaled by two user-specified fixity factors �FFs� �one for
each end� ranging from 0 to 1, with 0 corresponding to a perfectly
pinned condition and 1 corresponding to full continuity. Using the
fiber material model and its axial stress-strain history, the fiber
axial stress is updated, and the new axial forces and bending
moments at midlength of the segments are computed. Shear
forces, which are assumed constant along the segment at their
values at segment midlength to prevent shear locking, and twist-
ing moments are also updated at this time. Using the values of
internal forces at midlength, the segment nodal forces are com-
puted and assembled into the segment stiffness force vector. The
two elastic segment stiffness matrices and force vectors are found
by the procedure used for a plastic hinge element �Krishnan and
Hall 2006a� except that no plastic hinges are allowed to form.

Handling of Specific Aspects of Compression
Member Modeling

There are four key parameters of compression members that may
have a significant role to play in the evolution of their critical and
postbuckling behavior and the five-segment layout of the MEF
element lends itself to incorporate these parameters conveniently
in a rational manner.
1. Initial geometric imperfection: The interior nodes of the

middle fiber segment of the MEF element are initially dis-
placed laterally based on a user-specified major and/or minor
direction eccentricity. This initial geometric imperfection can
be input as a percentage of the length of the member. During
the member iterations, the coordinates of the interior nodes
are constantly updated starting from this imperfect initial
configuration.

2. Residual stresses: Differential cooling results in nonuniform
residual stresses in steel sections. Residual stresses can be
easily incorporated into the MEF element by shifting the
fiber stress-strain curve along the strain axis until the residual
stress level is located at zero strain. Various levels of residual
stresses can be assigned to various fibers of a fiber segment.
However, this feature has not been included in the current
version of FRAME3D.

3. Loading history: In a series of cyclic axial loading experi-
ments on 24 structural steel struts, Black et al. �1980� ob-
served significantly different buckling loads for two identical
specimen, one initially loaded and caused to yield in tension
and the other initially loaded in compression. They attributed

this behavior to the Bauschinger effect, which caused the
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stress-strain diagram in compression to be significantly
rounded, reducing the elastic range of response. The MEF
element will be able to approximately capture this effect
since the hysteresis loops �Fig. 2�b�� of the fiber axial stress-
strain behavior consist of linear segments upon unloading to
zero stress and cubic ellipses for further continuation of load-
ing in the reverse direction.

4. Gusset plate yielding: In cyclic loading tests on braces con-
nected to supports through gusset plates, it has been observed
that the gusset plates yield due to out-of-plane bending after
just a few cycles. This causes the brace support condition to
transition from a fixed end condition to a pinned-end condi-
tion. The bending of gusset plates can be approximately
modeled by matching the moment capacity of the gusset with
a portion of the flange fibers of the end segments of the MEF
element and zeroing the areas of the remaining fibers in the
flanges. Another alternative is to use end-FFs smaller than
unity.

Calibration

The fiber segment length of the MEF element needs calibration,
and a general criterion that is applicable to different types of cross
sections, slenderness ratios, and support conditions is to be estab-
lished. There are various aspects to the axial cyclic behavior of
struts that can be impacted by the fiber segment length which
limits the extent of the buckled region of the strut, including
elastic critical buckling load, buckling loads in subsequent com-
pressive cycles �elastic postbuckling degradation of the member�,
postbuckling inelastic behavior of strut �axial and lateral defor-
mation, peak tension, tension capacity degradation, and cycles to
local buckling and fracture/rupture/severing of the strut�. Of
these, except for the elastic critical buckling load, all other as-
pects are affected by mechanical properties of steel distinct from
modulus of elasticity �namely, yield strain, ultimate strain, frac-
ture strain, yield stress, ultimate stress, and the evolution of strain
hardening�. Elastic critical buckling load depends on the simu-
lated buckling mode shape which is sampled by the interior
nodes, hence the sole dependence on the location of the interior
nodes �i.e., dependence on the fiber segment length�. Thus, the
generalized criterion for the selection of the fiber segment length
in MEF elements is derived solely from its ability to predict the
elastic critical buckling load for various cross sections, slender-
ness ratios, and support conditions.

The Euler elastic critical buckling load for pinned ended mem-
bers, fixed ended members, and members with one end pinned
and one end fixed is �2EI /L2, 4�2EI /L2, and 2.0466�2EI /L2,
respectively. A single-MEF element is used to model idealized
struts with varying geometry, axially loaded in monotonically in-
creasing compression. The struts are made of box �B8�8
�3 /16, B10�10�5 /16, B12�12�7 /16, and B14�14�1 /2�
and wide-flange �W8�20, W10�39, W12�72, and W14�90�
sections, with varying slenderness ratios �L /r=40, 80, 120, 160,
and 200� and support conditions �pinned-pinned, pinned-fixed,
and fixed-fixed�. All the members are specified with large yield
stresses such that they remain elastic until buckling. A fiber seg-
ment length of 2% of the element length gives the best predictions
for the elastic critical buckling load, with overprediction in
roughly half the cases and underprediction in the remaining cases.
The ratio of the computed elastic critical buckling load, PCR, to
the theoretical Euler buckling load for various KL /r ratios is

shown in Fig. 3 �note that K’s are 1.0 for pinned-pinned condi-
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tion, 0.5 for fixed-fixed condition, and 0.699 for fixed-pinned con-
dition�. Prediction errors are under 3% in most cases with errors
up to �11.5% in cases with the low KL /r of 20.

Modeling the Elastic Postbuckling Behavior
of the Koiter-Roorda Frame

The ability of the MEF element to accurately simulate elastic
postbuckling behavior is investigated by modeling the L-shaped
Koiter-Roorda frame, which severely distorts due to column
buckling under persistently growing corner loading, using a
single-MEF element to model either leg of the frame. Approxi-
mate analytical solutions are available in the literature for conve-
nient performance assessment.

The L-shaped frame shown in Fig. 4 is loaded by a vertical
force P at a small horizontal eccentricity e relative to the corner.
The bars of the frame are of equal length and have equal uniform
bending rigidities EI. Two buckling modes exist for the frame as
shown in the figure. Simple free-body diagrams of the joint sug-
gest three clear reasons for the inward buckling mode �shown in
�c�� to be favored: �1� larger column axial force in this mode; �2�
beam is in compression in this mode reducing the flexural stiff-

Fig. 3. Calibration of fiber segment length for MEF elements: �a�
ratio of elastic critical buckling load, predicted using MEF elements
with fiber segment length of 2% of the element length, to the theo-
retical Euler buckling load plotted as a function of KL /r �the 120
points correspond to combinations of four box sections, four wide-
flange sections, five slenderness ratios, and three support conditions�;
�b� predicted elastic critical buckling loads plotted against the theo-
retical Euler buckling load for each of the 120 cases. The diagonal
line represents zero prediction error.
ness; and �3� curvature of the beam is smaller in this mode selec-
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tively facilitating this mode over the outward buckling mode. The
asymmetric elastic buckling of this frame was first illustrated by
Koiter �1967�, who provided solution for the evolution of the
corner rotation as a function of the applied axial load. Roorda
�1965� experimentally confirmed this result. Since then numerous
approximate analytical solutions have been proposed �Kounadis
1985; Bažant and Cedolin 1989; Bazant and Cedolin 2003�. Nu-
merical solutions using multiple elements to represent each bar
�Bazant and El Nimeiri 1973�, as well as semianalytical solutions
�Rizzi et al. 1980; Poulsen and Damkilde 1998; Silvestre and
Camotim 2005�, have been investigated. Here, this frame is mod-
eled using a single-MEF element for each of the two bars. Mul-
tiple cases have been studied �box sections, B8�8�3 /16 and
B12�12�7 /16; wide-flange sections, W10�39 and W14�90;
bar slenderness ratios L /r=40, 80, 120, 160, and 200; and applied
load eccentricity e=0.001, 0.01, and 0.05 L�. Shown in Fig. 5�a�
is the comparison of the numerical solution against the approxi-
mate analytical second-order solution proposed by Bažant and
Cedolin �1989� for the corner elastic rotation as a function of the
axial force normalized by the critical buckling load of the perfect
frame �PCR=1.407�2EI /L2� for one of the cases �B8�8
�3 /16, L /R=40�. The single-MEF-element solution does quite
well for reasonably large corner rotations. The smaller the applied
loading eccentricity, the better the MEF-element solution. The
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Fig. 4. �a� Undeformed geometry of the L-shaped Koiter-Roorda
frame eccentrically loaded at the corner. Two possible buckling
modes, shown in �b� and �c�, exist �after Bazant and Cedolin�. The
force equilibrium at the joint is shown for both cases. Buckling to the
left �mode shown in �c�� is favored.

Fig. 5. Comparison of the numerical solution using MEF elements
�dashed lines� against a second-order analytical solution �solid lines�
for the L-shaped Koiter-Roorda frame �B8�8�3 /16, L /R=40�
with a downward force �P� acting at the corner or at eccentricities of
e /L=0.001, 0.01, and 0.05: �a� corner rotation versus P / PCR; �b�
corner in-plane lateral displacement versus P / PCR
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in-plane horizontal displacement of the corner is plotted in Fig.
5�b� to provide some insight into the extent of frame deformation
until which the numerical solution is accurate. The results are
excellent for corner displacements up to about 15% L, and they
are satisfactory up to corner displacements of about 40% L. Mod-
eling results for a very slender W10�49 frame with L /R=200
�Fig. 6� and all the remaining cases are equally satisfactory
�Krishnan 2009b�.

Fig. 6. Comparison of the numerical solution using MEF elements
�dashed lines� against a second-order analytical solution �solid lines�
for the L-shaped Koiter-Roorda frame �W10�39, L /R=200� with a
downward force �P� acting at the corner or at eccentricities of e /L
=0.001, 0.01, and 0.05: �a� corner rotation versus P / PCR; �b� corner
in-plane lateral displacement versus P / PCR
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The evolution of the deformed shape of the B8�8�3 /16
frame with increasing vertical load is shown in Fig. 7. The inward
buckling mode shape is realized in the numerical solution, as
warranted by the theory. While the mode shape is not �and indeed
cannot be� exact, the approximation is quite satisfactory, espe-
cially in light of the numerical efficiency achieved as a result of
the use of a single element to model either bar.

Modeling the Inelastic Buckling of Cyclically
Loaded Struts in Pseudodynamic Tests

Numerous tests have been conducted to characterize the inelastic
behavior of struts under cyclic axial loading. Of particular interest
is the effect of various loading histories �protocols� on the degra-
dation of compression and tension capacities and the axial and
lateral deformations due to successive buckling under compres-
sion and straightening and possibly yielding under tension. For
the MEF element to be used effectively in predicting inelastic
buckling behavior, it must be able to reproduce the experimental
results. This is a challenging task. The sensitivity of response to
boundary conditions and geometric imperfections is well docu-
mented in the literature. Experimental conditions can vary signifi-
cantly and the absolute control on these variables cannot be
guaranteed. For example, typical brace connections are neither
perfectly hinged nor completely fixed; some moment is always
transferred. However, the degree of fixity cannot be reliably quan-
tified. Likewise, perfectly straight members cannot be rolled in
the steel mill or cold formed in the shop, and there is uncertainty
regarding the degree of member out of straightness, which may

0 50 100 150
−150

−100

−50

0

X (in)Y (in)

0 20 40 60
0

0.2

0.4

0.6

0.8

1

(s)

P
/P

cr

Applied Force

0 0.5 1
0

0.2

0.4

0.6

0.8

1

θ

P
/P

cr

Force vs Rotation

0 50 100 150
−150

−100

−50

0

X (in)Y (in)

Z
(in

)

0 20 40 60
0

0.2

0.4

0.6

0.8

1

(s)

P
/P

cr

Applied Force

0 0.5 1
0

0.2

0.4

0.6

0.8

1

θ

P
/P

cr

Force vs Rotation

t various levels of corner loading �zero eccentricity�
0
)

Z
(in

)

rame a
2010

tion subject to ASCE license or copyright. Visithttp://www.ascelibrary.org



have an appreciable impact on the critical buckling loads. As a
result, a certain degree of tuning is typically needed to match the
experimental results. Because trade-offs exist between say end-
fixity conditions and geometric imperfection in as far as the elas-
tic critical buckling load is concerned, there is no unique way to
tune the model parameters. The approach taken here is to choose
an initial set of model parameters based on the available experi-
mental data and tune these parameters to realize the best possible
match for the elastic buckling load, the peak tension, and the
time to rupture or severing of the strut. The hysteretic behavior of
this tuned model is then compared against data from the experi-
ment. Three distinct data sets �Black et al. 1980; Fell et al. 2006;
Tremblay et al. 2003� are considered to ensure that the MEF
element is able to capture inelastic buckling behavior satisfacto-
rily under a variety of experimental conditions. While models
corresponding to all the specimens in these data sets can be found
in Krishnan �2009b�, a few illustrative examples from the data
sets of Fell et al. and Tremblay et al. are presented here.

Test Data of Fell et al.

A series of cyclic load tests were conducted recently by Fell et al.
on 19 tube �HSS, A500, Grade B�, pipe �A53, Grade B�, and
wide-flange �A992� sections under the auspices of the NEES pro-
gram, with the objective of investigating earthquake-induced
buckling and fracture behavior �Fell et al. 2006; Fell 2008; Fell
et al. 2009�. Three loading protocols were used, a far-field loading
protocol and two near-fault—compression dominated and tension
dominated—loading protocols that reflect demands imposed by
near-fault ground motions. Another distinguishing feature of these
tests was the use of typical braced frame connections, with the
strut welded to a gusset plate that is bolted to the movable con-
straint frame and the stationary reaction block. The gusset plates
were designed to preclude buckling. In fact, they yielded in out-
of-plane plate bending in all the tests. While this resulted in an
effectively pinned-end condition for the tube specimen �due to
their superior out-of-plane stiffness dwarfing the low out-of-plane
stiffness of the yielded gusset�, partially fixed end conditions were
created for the wide-flanged sections �whose lower out-of-plane
stiffness is not enough to render the stiffness of the yielded gusset
insignificant�. The investigators paid close attention to the onset
of local buckling and fracture and cataloged these events for each
test.

In this study, the specimen of Fell et al. using HSS and wide-
flange sections are modeled using single-MEF elements �Fig. 8�.
The fiber yield and ultimate stresses are tuned to achieve the
experimentally observed peak tension, the fiber fracture strain is
tuned to synchronize the first occurrence of fracture in the model
with that in the experiment, and the fiber rupture strain is tuned to
synchronize the severing of the brace in the model with that in the
experiment. There is significant discrepancy between the best-fit
model fiber yield and ultimate stresses, and the coupon test data.
The model values are uniformly lower than the corresponding
coupon test values possibly because the coupons were tested
under monotonic tension, whereas peak tension in the brace is
reached after a few cycles of successive compression and tension.
While pinned-end boundary conditions are assumed for all the
HSS braces �since the gusset plates yielded and full plastic hing-
ing occurred�, partial fixity conditions are assumed for the wide-
flange sections whose out-of-plane stiffnesses do not dwarf that of
the partially yielded gusset plates. The model parameters �and the

corresponding coupon test data� are summarized in Table 1. The

JOURNAL O

Downloaded 28 Jun 2011 to 131.215.127.56. Redistribu
hysteretic response of the tuned model is compared against the
observed behavior through axial force–axial deformation and
axial force–lateral deformation histories.

Specimen 2 �HSS 4�4�1 /4� was subjected to an asymmet-
ric compression-dominated near-field loading history. In the first
strong cycle, the brace was loaded to 2% drift angle in tension,
followed by 6% drift angle in compression �the axial deformation
of the brace was converted to a story drift angle using a chevron-
braced frame assumption with brace angle of 45° to the horizontal
plane; �=2� /Lb, where � is the story drift angle, � is the axial
deformation of the brace, and Lb is the length of the brace�. The
brace yielded and elongated in the first tensile excursion, signifi-
cantly lowering the compressive buckling load. Local buckling
was observed during the first large compression excursion �at a
drift of 2.5%�. The brace cycled at a residual drift of 3% for the
remainder of the test. The MEF element is able to capture the
hysteretic behavior accurately as evidenced by the agreement in
the observed and computed axial force–axial deformation and
axial force–lateral deformation histories shown in Fig. 9. The ten-
sile severing of the brace is not adequately captured; however,
the lateral deformation of the brace agrees quite well with the
experiment.

Specimen 16 �W12�16� was subjected to an asymmetric
tension-dominated near-field loading history, consisting of a large
monotonic pull �8% drift� followed by subsequent lower ampli-
tude cycles. It is similar to the compression-dominated history
except that it does not consist of a large compression excursion
prior to the first tension pull to avoid buckling. While the nature
of the hysteretic response of the model is remarkably similar
to that observed in the experiment, the peak lateral deformation
in the model ��15 in.� falls short of the observed brace lateral
displacement ��22 in.�. As in the case of the near-field
compression-dominated loading history, the severing of the brace
is not adequately captured in the simulation �Fig. 10�. The results
of simulations of the remaining specimen, presented by Krishnan
�2009b�, are generally better with synchronized brace severing in
the model and the experiment.

Test Data of Tremblay et al.

Tremblay et al. �2003� conducted a set of 24 full-scale cyclic
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Fig. 8. FRAME3D model of the experimental setup of Black et al.
and Fell et al., data from which are used to validate the MEF element
quasistatic tests on a one-story single-bay steel braced frame with
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single diagonal brace and X-bracing configurations. The braces
were made of rectangular hollow sections. The frame was hinged
at the four corners by means of high-strength steel pins inserted
carefully in machined bushings and mounted horizontally on a
strong floor. The hinges at the bottom end of each column were
restrained from translation. The frame was allowed to sway later-
ally at the upper end. Two displacement time histories were em-
ployed. The story drift sequence was applied by two alternating
single-action actuators. The braces were connected to the frame
by means of gusset plates. For the single brace schemes, two

Table 1. Fell et al. Coupon Test Data �Yield Stress, Ultimate Stress, and
Ultimate Stress, Strain at Ultimate Stress, Strain at the Onset of Strain H
of the Span, and End Fixity Factor �FF��

Strut Section

Coupon tests

�y

�ksi�
�u

�ksi� �u

�
�k

1 HSS4�4�1 /4 71.9 77.6 0.07 69

2 HSS4�4�1 /4 71.9 77.6 0.07 69

3 HSS4�4�1 /4 71.9 77.6 0.07 69

4 HSS4�4�3 /8 76.5 83.9 0.05 65

5 HSS4�4�3 /8 76.5 83.9 0.05 65

14 W12�16 N/A N/A N/A 60

15 W12�16 N/A N/A N/A 60

16 W12�16 N/A N/A N/A 60

Notes: Fiber strains due to element end rotations are scaled by the fixity fa
were not tested. An elastic modulus E of 29,000 ksi, and a tangent modu

Fig. 9. Comparison of simulation against data from Test 2 of Fell et
al. on HSS4�4�1 /4 �KL /r�80�: �a� axial displacement versus
axial force history; �b� minor direction lateral displacement versus
axial force history
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brace configurations are possible—bottom-left to top-right �iden-
tified by Label “A”� or bottom-right to top-left �identified by
Label “B”�. The same displacement history was applied in both
configurations so that the brace in Test A was first loaded in
tension, whereas the brace in Test B was first loaded in compres-
sion. The lateral sway of the frame and the story shear �the ap-
plied force history� were recorded until brace failure.

Recently, Aguero et al. �2006� modeled the inelastic cyclic
response of two of these braces �S2A and S1QB�, with eight
force-based fiber elements per brace �16 cross-sectional fibers and

at Ultimate Stress� and MEF-Element Model Parameters �Yield Stress,
g, Minor Direction Eccentricity/Geometric Imperfection as a Percentage

Model parameters

�u

�ksi� �u �sh

�frac

�y

emin

�% L� FF

73.47 0.30 0.010 236 0.0005 0.000

73.47 0.30 0.010 146 0.0005 0.000

73.47 0.25 0.010 210 0.0005 0.000

72.86 0.50 0.012 450 0.1000 0.000

72.86 0.50 0.012 450 0.1000 0.000

62.00 0.25 0.012 275 0.0005 0.200

62.00 0.55 0.016 500 0.0005 0.032

70.00 0.55 0.016 500 0.0005 0.400

sulting in depleted moment transfer. Coupons from the W12�16 section
the initiation of strain hardening Esh of 580 ksi is used for all models.

Fig. 10. Comparison of simulation against data from Test 16 of Fell
et al. on W12�16 �KL /r�159�: �a� axial displacement versus axial
force history; �b� minor direction lateral displacement versus axial
force history
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3 integration points per element� using a small deformation large-
displacement corotational formulation implemented on the Op-
enSees computational framework �McKenna 1997; Mazzoni et al.
2005�. This approach was first proposed by Uriz and Mahin
�2004�, who used two force-based elements per brace, each of
which uses three control sections �one at each end and one at the
center�, with 40 fibers per control section, to demonstrate good
agreement with test data from Yang and Mahin �2005�. Here, the
viability of using a single-MEF element to model the same is
investigated. A schematic representation of the FRAME3D mod-
els is shown in Fig. 11. The columns and beam in the frame are
modeled using plastic hinge elements. No yielding or other forms
of nonlinearity were observed in these members during the ex-
periments; hence, using MEF elements to model them will not
have a notable impact on the results. Only the single-bracing
schemes are considered in this study. The brace-to-column and
brace-to-beam connections in the test setup were made through
gusset plates, and brace end-fixity is related to the out-of-plane
bending stiffness of the connecting plates. Since the column was
shorter than the beam, the angle made by the brace to the column
was closer to 90° than the angle made by the brace to beam. As a
result the effective length of the connecting plates at the brace-
to-column connection was shorter �and hence the bending stiff-
ness was greater� than that at the brace-to-beam connection. In the
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Fig. 11. FRAME3D model of the experimental setup of Tremblay
et al., data from which are used to validate the MEF element

Table 2. Tremblay et al. Coupon Test Data �Yield Stress, Ultimate Stre
Stress, Ultimate Stress, Strain at Ultimate Stress, Strain at the Onset of
Percentage of the Span, and Fixity Factors for the Two Ends �FF1 and F

Strut Section
E

�ksi�
Esh

�ksi�

S1A-S1B RHS127�76�4.8 28,704.3 1,200

S2A-S2B RHS102�76�4.8 26,817.7 1,200

S3A-S3B RHS76�76�4.8 27,079.4 580

S4A-S4B RHS127�64�4.8 28,185.5 580

S5A-S5B RHS102�76�6.4 26,526.6 580

S1QA-S1QB RHS127�76�4.8 28,704.3 580

S4QA-S4QB RHS127�64�4.8 27,266.1 580

Note: Fiber strains due to element end rotations are scaled by the fixity f

imperfection, and fracture strains larger than rupture strain are assumed for all
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FRAME3D model, it is assumed that there is full fixity at the
brace-to-column connection �although the joint itself is assumed
simply supported allowing free rotation as in the experiment, and
the end moment in the brace must be balanced by the column end
moment; this is generally quite small relative to the moment ca-
pacity of the brace�. The end fixity at the beam-to-brace connec-
tion is adjusted to yield the best possible results for lateral forces
at critical buckling and buckling at subsequent cycles. In many
instances a compromise is made by choosing a lower end fixity to
achieve a better match for the lateral loads corresponding to buck-
ling of the brace in postcritical compression excursions while not
accurately matching that corresponding to critical buckling. The
model parameters corresponding to each experiment are listed in
Table 2. While yield stress of the material was recorded from stub
column tests, no information is available on the ultimate stresses.
The fiber ultimate stress in the model is tuned to realize a good
match between the lateral force recorded in brace tension excur-
sions of the experiment and that from the model. The fiber ulti-
mate strain is adjusted to best capture the timing of the severing
of the brace in the experiment. Compared in Table 3 are the
maximum and minimum lateral forces applied on the frame in
each test against the corresponding story shears from FRAME3D
models. The significant discrepancies in observed and modeled
peak lateral loads are related to the choice of end fixity which was
made to achieve good agreement in the cyclic degradation of
brace capacities, as opposed to matching just the critical buckling
load, as discussed previously. Also shown in the table are the
observed and computed brace peak lateral deformations. The
agreement is quite good and points to the ability of the MEF
element to capture large deformations.

The frame lateral displacement �sway� response history plotted
against the applied lateral force for the two specimens considered
by Aguero et al. �2006�, S2A and S1QB, along with their coun-
terparts, S2B and S1QA, from FRAME3D models is shown in
Figs. 12 and 13, respectively. In general, while the overall nature
of the hysteretic behavior is accurately captured, there are signifi-
cant differences between the model and the observation. How-
ever, the degree of mismatch is no worse than the simulation of
Aguero et al. �2006� using eight elements to model the brace,
indicating that increasing the level of discretization in modeling
the brace does not necessarily help in capturing its response any
better and that the level of discretization proposed in the MEF
element may be adequate. The extent of mismatch also points to
the inherent uncertainties associated with an assembled structure
�i.e., variability in the as-built conditions such as connection fix-

Strain at Ultimate Stress� and MEF-Element Model Parameters �Yield
Hardening, Minor Direction Eccentricity/Geometric Imperfection as a

Model parameters

�y

�ksi�
�u

�ksi� �u �sh FF1 FF2

57.3 62.0 0.0975 0.012 1.00 0.35

55.3 62.0 0.1600 0.012 1.00 0.20

56.4 65.0 0.2300 0.012 1.00 0.00

55.9 57.0 0.0700 0.012 1.00 0.90

61.1 68.0 0.2000 0.012 1.00 0.20

57.3 68.0 0.1025 0.012 1.00 1.00

53.9 57.0 0.1000 0.012 1.00 1.00

esulting in depleted moment transfer. An infinitesimally small geometric
ss, and
Strain

F2��

actor r

models.
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